UUCMS No.

B.M.S. COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU – 560004 SEMESTER END EXAMINATION – SEPT/OCT 2023

M.Sc in Mathematics – 2nd Semester

PARTIAL DIFFERENTIAL EQUATIONS

Course Code: MM204T Duration: 3 Hours

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

1. a) Find the integral surface of the linear partial differential equation

$$x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z,$$

containing the straight line $x + y = 0, z = 1.$

b) Solve $yu_x + xu_y = u$ with condition $u(x, 0) = x^3$, by the method of characteristics.

(7+7)

(7+7)

(7+7)

QP Code: 12004 Max. Marks: 70

2. a) Solve the initial value problem $u_t + xu_x = x$, $0 \le x \le 1, t > 0$ and u(x, 0) = 2x. Also show that the solution remains bounded as $t \to +\infty$.

b) Find the characteristics of the partial differential equation pq = u and determine the integral surface which passes through the straight line x = 1, y = u.

3. a) Classify the partial differential equation $u_{xx} + xu_{yy} = 0$ for $x \neq 0$. In elliptic case, reduce it to its canonical form.

b) Classify the partial differential equation $x^2u_{xx} - 2xyu_{xy} + y^2u_{yy} = e^x$ and reduce it to canonical form.

4. a) Solve: $(D^3 - 2D^2D' - DD'^2 + 2D'^3)u = e^{x+y}$

b) Solve:
$$x^2r - y^2t = x^2y^3$$

c) Solve:
$$(D^2 - 6DD' + 9D'^2)u = 12x^2 + 36xy$$
 (5+4+5)

5. a) Find the solution of wave equation in cylindrical polar form.
b) Obtain D'Alembert solution of IBVP: utt = C² uxx, -∞ < x < ∞, t ≥ 0 with u(x, 0) = f(x), ut(x, 0) = g(x), -∞ < x < ∞. (7+7)

- State and prove Dirichlet and Neumann problem involving Laplace equation in an upper half plane. (14)
- 7. a) Solve IBVP: $u_t = K u_{xx}$, $0 < x < \infty$, $t \ge 0$, subjected to $u(x, 0) = e^{-x}$, 0 < x < 1, $u_x(0, t) = 0$, t > 0, by applying appropriate Fourier transform.
 - b) Solve IBVP: $u_t = K u_{xx}$, $0 \le x \le 1, t \ge 0$, subjected to u(x, 0) = x(1-x), $0 \le x \le 1, t \ge 0$, u(0, t) = 0 = u(1, t), $t \ge 0$, using variable separable method.
- 8. a) Solve IBVP: $u_{tt} = K u_{xx}$, $0 \le x \le 1, t \ge 0$, subjected to $u(x, 0) = f(x), \frac{\partial u}{\partial t}(x, 0) = g(x), 0 \le x \le 1$ and $u(0, t) = 0 = u(1, t), t \ge 0$ by using suitable integral transform method.
 - b) Apply Duhamel's principle to obtain the solution of the non-homogeneous problem $u_t u_{xx} = f(x), -\infty < x < \infty, \ t > 0$ with $u(x, 0) = 0, -\infty < x < \infty.$ (7+7)

(7+7)